A cost-effective two-step method for enhancing the hydrophilicity of PDMS surfaces
نویسندگان
چکیده
Poly(dimethylsiloxane) (PDMS) is commonly used for fabricating microand nanofluidic devices due to its low cost and ease of fabrication. The major disadvantage to using PDMS for these applications is its hydrophobic properties. The current methods that enhance the hydrophilicity of elastomers used for microand nanofluidic applications are intricate and cost-inefficient. This contribution demonstrates how the hydrophobic PDMS surface can be chemically modified in 5 minutes using a two-step silanization method in an oxygen-saturated environment to provide a highly stable hydrophilic surface for irreversible PDMS to PDMS bonding and PDMS to borosilicate glass bonding. The surface wettabilities of the modified and pristine PDMS were characterized over a wide range of time using static contact angle measurements. The modified PDMS surfaces exhibit enhanced stable hydrophilicity with a contact angle of 87�for 5 days. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectra of the modified and pristine PDMS surfaces confirmed the presence of hydroxyl groups of water molecules in the modified PDMS at 3150 cm in addition to the characteristic peaks of pristine PDMS. This reliable silane beaker chemistry-based method allows easy bonding of the PDMS surfaces for liquid containment and irreversible bonding to borosilicate glass. This approach can effectively be adapted for enhancing the hydrophilicity of PDMS, which ensure relevance for current and future microand nanofluidic applications.
منابع مشابه
The Effect of Hydrophobic Patterning on Micromolding of Aqueous-Derived Silk Structures
A novel micromolding approach was developed to process liquid biopolymers with high aqueous solvent contents (>90% water). Specifically silk fibroin was cast into a well-defined scaffold-like structures for potential tissue engineering applications. A method was developed to pattern the hydrophilicity and hydrophobicity of the polydimethylsiloxane (PDMS) mold surfaces. The water based biopolyme...
متن کاملQuantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and its Swelling Effect
In this paper, a low-cost yet effective method of irreversible bonding between two elastomeric polydimethylsiloxane (PDMS) interfaces using Piranha solution is investigated. Piranha solutions at a weight ratio of 3:1 using different acids and hydrogen peroxide were attempted. The average tensile strengths of the device bonded with concentrated sulfuric acid-based piranha solution and nitric aci...
متن کاملOne-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
Poly(dimethylsiloxane) (PDMS) has become the material of choice for fabricating microfluidic channels for lab-on-a-chip applications. Key challenges that limit the use of PDMS in microfluidic applications are its hydrophobic nature, and the difficulty in obtaining stable surface modifications. Although a number of approaches exist to render PDMS hydrophilic, they suffer from reversion to hydrop...
متن کاملHydrophilicity and antibacterial properties of Ag / TiO2 nanoparticle
TiO2 thin films and Ag/TiO2 nanoparticles were prepared by CVD and plasma bombardment method. XRD results showed the presence of Ag nanoparticles in TiO2 matrix. SEM image confirmed formation of Ag nanoparticles. XPS analysis was utilized to study the chemical state of the Ag/TiO2 nanostructure. Statistical surface analysis revealed that since there i...
متن کاملPoly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications.
Poly(dimethyl siloxane) elastomer, (PDMS) is widely used as a biomaterial. However, PDMS is very hydrophobic and easily colonized by several bacteria and yeasts. Consequently, surface modification has been used to improve its wettability and reduce bacterial adhesion. The aim of this work was to modify the PDMS surface in order to improve its hydrophilicity and bacterial cell repulsion to be us...
متن کامل